An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae.
نویسندگان
چکیده
A recessive temperature-sensitive mutation of Saccharomyces cerevisiae has been isolated and shown to cause an increase in ploidy in both haploids and diploids. Genetic analysis revealed that the strain carrying the mutation was an aa diploid, although MNNG mutagenesis had been done on an a haploid strain. When the mutant strain was crossed with an alpha alpha diploid and the resultant tetraploid sporulated, some of the meiotic progeny of this tetraploid were themselves tetraploid, as shown by both genetic analysis and DNA measurements, instead of diploid as expected of tetraploid meiosis. The ability of these tetraploids to continue to produce tetraploid meiotic progeny was followed for four generations. Homothallism was excluded as a cause of the increase in ploidy; visual pedigree analysis of spore clones to about the 32-cell stage failed to reveal any zygotes, and haploids that diploidized retained their mating type. An extra round of meiotic DNA synthesis was also considered and excluded. It was found that tetraploidization was independent of sporulation temperature, but was dependent on the temperature of germination and the growth of the spores. Increase in ploidy occurred when the spores were germinated and grown at 30 degrees, but did not occur at 23 degrees. Two cycles of sporulation and growth at 23 degrees resulted in haploids, which were shown to diploidize within 24 hr when grown at 30 degrees. Visual observation of the haploid cells incubated at 36 degrees revealed a cell-division-cycle phenotype characteristic of mutations that affect nuclear division; complementation analysis demonstrated that the mutation, cdc31-2, is allelic to cdc31-1, a mutation isolated by Hartwell et al. (1973) and characterized as causing a temperature-sensitive arrest during late nuclear division. The segregation of cdc31-2 in heterozygous diploids was 2:2 and characteristic of a noncentromere-linked gene.
منابع مشابه
P-18: Protective Effect of Selenium- Enriched Saccharomyces Cerevisiae Cytoplasm and Cell Wall on Chronic Immobilization Stress-Induced Damages in Testis; Evidence for Apoptosis
Background Previous reports showed that immobilization stress (IMS) results in severe damages at spermatogenesis level. Present study was performed in order to evaluate the protective effect of selenium-enriched yeast fragments on IMS-induced derangements. MaterialsAndMethods For this purpose, 42 mature male Wister rats were assigned into 6 groups (7 rats in each group) including; control, stre...
متن کاملInhibitory Effect of Supernatant and Lysate of Saccharomyces cerevisiae on Expression of exoA Gene of Pseudomonas aeruginosa
Background and Aim: Pseudomonas aeruginosa is an important ubiquitous and especially common pathogen in the hospital. Exotoxin A that encoded by exoA gene has a role in pathogenesis of this bacterium. Today, probiotics are widely used in the treatment and prevention of diseases. The present study aimed to study the Saccharomyces cerevisiae S3 effect on the expression of exoA gene. Materials an...
متن کاملSimultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design
Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...
متن کاملSimultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design
Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...
متن کاملCharacterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملمهار رشد رده سرطانی K562 با استفاده از دیواره سلولی استخراج شده از پروبیوتیکهای Saccharomyces cerevisiae و Saccharomyces boulardi به همراه نانو ذرات روی
Background: Chronic myeloid leukemia is a common cancer in human, so the goal of this study was the use of natural compound such as cell wall obtained from Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardi (S. boulardi) and zinc nanoparticles on the growth inhibition of K562 cell line. Methods: For cell wall preparation, both yeasts were cultured in a basic medium at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 97 3-4 شماره
صفحات -
تاریخ انتشار 1981